login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043305
Numbers k such that the numerator of the sum of the reciprocals of the divisors of k (=A017665(k)) is a power of 2.
4
1, 3, 6, 7, 15, 21, 28, 31, 33, 42, 69, 84, 91, 93, 105, 127, 135, 141, 186, 217, 231, 270, 273, 285, 381, 420, 465, 483, 496, 546, 573, 651, 762, 775, 819, 861, 868, 889, 924, 945, 987, 1023, 1149, 1185, 1302, 1365, 1419, 1485, 1488, 1561, 1638, 1743, 1890
OFFSET
1,2
COMMENTS
After 1, a subsequence of A216782. If both x and y are terms and gcd(x, y) = 1, then x*y is also present. - Antti Karttunen, Mar 20 2023
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..910 from Harvey P. Dale)
MATHEMATICA
Select[Range[2000], IntegerQ[Log[2, Numerator[Total[1/Divisors[#]]]]]&] (* Harvey P. Dale, Nov 29 2014 *)
PROG
(PARI) isok(n) = (ispower(num = numerator(sigma(n)/n), , &s) && (s == 2)) || (num == 2) || (num == 1); \\ Michel Marcus, Nov 21 2013
(PARI) isA043305(n) = { n=sigma(n)/gcd(sigma(n), n); !bitand(n, n-1); }; \\ Antti Karttunen, Mar 20 2023
CROSSREFS
Cf. A017665, A216782, A361465 (characteristic function).
Subsequences: A000396, A336702, A348943 (odd terms).
Sequence in context: A124611 A281900 A266615 * A227723 A192124 A334210
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 04 2002
STATUS
approved