Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Mar 21 2023 09:22:52
%S 1,3,6,7,15,21,28,31,33,42,69,84,91,93,105,127,135,141,186,217,231,
%T 270,273,285,381,420,465,483,496,546,573,651,762,775,819,861,868,889,
%U 924,945,987,1023,1149,1185,1302,1365,1419,1485,1488,1561,1638,1743,1890
%N Numbers k such that the numerator of the sum of the reciprocals of the divisors of k (=A017665(k)) is a power of 2.
%C After 1, a subsequence of A216782. If both x and y are terms and gcd(x, y) = 1, then x*y is also present. - _Antti Karttunen_, Mar 20 2023
%H Amiram Eldar, <a href="/A043305/b043305.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..910 from Harvey P. Dale)
%t Select[Range[2000],IntegerQ[Log[2,Numerator[Total[1/Divisors[#]]]]]&] (* _Harvey P. Dale_, Nov 29 2014 *)
%o (PARI) isok(n) = (ispower(num = numerator(sigma(n)/n), , &s) && (s == 2)) || (num == 2) || (num == 1); \\ _Michel Marcus_, Nov 21 2013
%o (PARI) isA043305(n) = { n=sigma(n)/gcd(sigma(n),n); !bitand(n,n-1); }; \\ _Antti Karttunen_, Mar 20 2023
%Y Cf. A017665, A216782, A361465 (characteristic function).
%Y Subsequences: A000396, A336702, A348943 (odd terms).
%K easy,nonn
%O 1,2
%A _Benoit Cloitre_, Apr 04 2002