login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361465
a(n) = 1 if A017665(n) [the numerator of the sum of the reciprocals of the divisors of n] is a power of 2, otherwise 0.
4
1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = A209229(A017665(n)).
If a(x) = a(y) = gcd(x, y) = 1, then also a(x*y) = 1.
MATHEMATICA
pow[n_] := If[n == 2^IntegerExponent[n, 2], 1, 0];
a[n_] := pow[Numerator[DivisorSigma[-1, n]]]; Array[a, 100] (* Amiram Eldar, Mar 20 2023 *)
PROG
(PARI)
A017665(n) = numerator(sigma(n)/n);
A209229(n) = (n && !bitand(n, n-1));
CROSSREFS
Characteristic function of A043305.
Cf. A017665, A209229, A355943 [= A000035(n)*a(n)], A361466 [= a(A003961(n))].
Sequence in context: A188467 A039983 A152490 * A145273 A295892 A120522
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 20 2023
STATUS
approved