login
A355943
a(n) = 1 if n is odd and A064989(sigma(n)) divides A064989(n), otherwise 0, where A064989 is fully multiplicative with a(2) = 1 and a(p) = prevprime(p) for odd primes p, and sigma is the sum of divisors function.
5
1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = A000035(n) * [0 == A064989(n) mod A350073(n)], where [ ] is the Iverson bracket.
a(n) = A000035(n) * A361465(n) = A000035(n) * A361466(A064989(n)). - Antti Karttunen, Mar 20 2023
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A348942(n) = { my(u=A326042(n)); (u / gcd(n, u)); };
A355943(n) = ((n%2)&&!(A064989(n)%A064989(sigma(n))));
CROSSREFS
Characteristic function of A348943.
Cf. also A355946.
Sequence in context: A373371 A379651 A321692 * A102242 A005369 A278169
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 23 2022
STATUS
approved