login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373371
a(n) = 1 if the sum of prime factors with repetition is a multiple of 3, otherwise 0.
11
1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
1
COMMENTS
a(n) = 1 if the multiplicities of prime factors of the forms 3m+1 (A002476) and 3m-1 (A003627) are equal modulo 3, otherwise 0. - Antti Karttunen, Jun 13 2024
FORMULA
a(n) = [A001414(n) == 0 (mod 3)], where [ ] is the Iverson bracket.
From Antti Karttunen, Jun 13 2024: (Start)
a(n) = [A373591(n) == A373592(n) (mod 3)].
a(n) = a(n/A038500(n)) = A359430(n/A038500(n)) = A369658(n/A038500(n)).
(End)
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A373371(n) = !(A001414(n)%3);
(PARI) A373371(n) = { my(f = factor(n), m1=0, m2=0); for(i = 1, #f~, if(1==(f[i, 1]%3), m1 += f[i, 2], if(2==(f[i, 1]%3), m2 += f[i, 2]))); 0==((m1-m2)%3); }; \\ Antti Karttunen, Jun 13 2024
CROSSREFS
Characteristic function of A289142.
Cf. also A359430, A369658, A373372.
Sequence in context: A190236 A190224 A352678 * A321692 A355943 A102242
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved