login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369658
a(n) = 1 if n is not multiple of 3, but its arithmetic derivative is, otherwise 0.
11
0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
OFFSET
0
COMMENTS
Conjecture: the asymptotic mean of this sequence is (2/3)*(1/3) = 2/9. Compare to the comment at A369653, but consider also the four lowermost rows of the table given at A369252 (and further generalizations to various number of primes), and also A007352, A096629, and how they affect such probabilities.
Sum_{i=1..10^n} a(i), for n = 1..10 gives: 2, 18, 201, 2110, 21484, 216973, 2181521, 21896827, 219541804, 2199637607. - Antti Karttunen, Jun 17 2024
FORMULA
a(n) = A011655(n) * A079978(A003415(n)) = A011655(n) * A359430(n).
a(n) <= A369643(n) <= A359430(n).
For n >= 1, a(n) <= A373474(n). - Antti Karttunen, Jun 07 2024
For n >= 1, a(n) = A011655(n) * A373371(n) = A011655(n) * [A373591(n) == A373592(n) (mod 3)]. - Antti Karttunen, Jun 13 2024
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A369658(n) = ((n%3)&&(0==(A003415(n)%3)));
(PARI) A369658(n) = if(n<2, n, if(!(n%3), 0, my(f = factor(n), m1=0, m2=0); for(i=1, #f~, if(1==(f[i, 1]%3), m1 += f[i, 2], if(2==(f[i, 1]%3), m2 += f[i, 2]))); 0==((m1-m2)%3))); \\ Antti Karttunen, Jun 16 2024
CROSSREFS
Characteristic function of A369659.
Differs from related A369643 for the first time at n=54, where a(54) = 0, while A369643(54) = 1.
Differs from related A373474 for the first time at n=19683, where a(19683) = 0, while A373474(19683) = 1.
Cf. also A353557, A360109, A369968, for cases k = 2, 4, 5 of the characteristic functions for nonmultiples of k whose arithmetic derivative is multiple of k.
Sequence in context: A098108 A363712 A030214 * A025464 A373260 A162518
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 10 2024
STATUS
approved