OFFSET
0
COMMENTS
Conjecture: the asymptotic mean of this sequence is (2/3)*(1/3) = 2/9. Compare to the comment at A369653, but consider also the four lowermost rows of the table given at A369252 (and further generalizations to various number of primes), and also A007352, A096629, and how they affect such probabilities.
Sum_{i=1..10^n} a(i), for n = 1..10 gives: 2, 18, 201, 2110, 21484, 216973, 2181521, 21896827, 219541804, 2199637607. - Antti Karttunen, Jun 17 2024
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..100000
Eric Weisstein's World of Mathematics, Chebyshev Bias
FORMULA
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
(PARI) A369658(n) = if(n<2, n, if(!(n%3), 0, my(f = factor(n), m1=0, m2=0); for(i=1, #f~, if(1==(f[i, 1]%3), m1 += f[i, 2], if(2==(f[i, 1]%3), m2 += f[i, 2]))); 0==((m1-m2)%3))); \\ Antti Karttunen, Jun 16 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 10 2024
STATUS
approved