login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373591
Number of primes congruent to 1 modulo 3 dividing n (with multiplicity).
8
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 1
OFFSET
1,49
LINKS
FORMULA
a(n) = A001222(A248909(n)).
a(n) = A001222(n) - (A007949(n)+A373592(n)).
Totally additive with a(3) = 0, a(p) = 1 if p == 1 (mod 3), and a(p) = 0 if p == 2 (mod 3). - Amiram Eldar, Jun 17 2024
MATHEMATICA
f[p_, e_] := If[Mod[p, 3] == 1, e, 0]; f[3, e_] := 0; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 17 2024 *)
PROG
(PARI) A373591(n) = sum(i=1, #n=factor(n)~, (1==n[1, i]%3)*n[2, i]); \\ After code in A083025
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 13 2024
STATUS
approved