login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277885
a(n) = index of the least non-unitary prime divisor of n or 0 if no such prime-divisor exists.
6
0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 3, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 4, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 4, 2, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1
OFFSET
1,9
FORMULA
a(1) = 0; for n > 1, if A067029(n) > 1, a(n) = A055396(n), otherwise a(n) = a(A028234(n)). [One may use A032742 instead of A028234 for recursing.]
A008578(1+a(n)) = A249739(n).
For n > 1, a(n) + A277697(n) > 0.
MATHEMATICA
Table[PrimePi@ Min[Select[FactorInteger[n][[All, 1]], ! CoprimeQ[#, n/#] &] /. {} -> 0], {n, 120}] (* Michael De Vlieger, Nov 15 2016 *)
PROG
(Scheme) (definec (A277885 n) (cond ((= 1 n) 0) ((< 1 (A067029 n)) (A055396 n)) (else (A277885 (A028234 n)))))
(Python)
from sympy import factorint, primepi, isprime, primefactors
def a049084(n): return primepi(n)*(1*isprime(n))
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def a028234(n):
f = factorint(n)
return 1 if n==1 else n/(min(f)**f[min(f)])
def a067029(n):
f=factorint(n)
return 0 if n==1 else f[min(f)]
def a(n): return 0 if n==1 else a055396(n) if a067029(n)>1 else a(a028234(n)) # Indranil Ghosh, May 15 2017
(PARI) a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] > 1, return(primepi(f[i, 1])))); 0; } \\ Amiram Eldar, Jul 28 2024
CROSSREFS
Cf. A277697.
Cf. A005117 (gives the positions of zeros).
Sequence in context: A284574 A206499 A378619 * A333842 A334109 A373591
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 08 2016
STATUS
approved