login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277697
a(n) = index of the least unitary prime divisor of n or 0 if no such prime-divisor exists.
5
0, 1, 2, 0, 3, 1, 4, 0, 0, 1, 5, 2, 6, 1, 2, 0, 7, 1, 8, 3, 2, 1, 9, 2, 0, 1, 0, 4, 10, 1, 11, 0, 2, 1, 3, 0, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 0, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 0, 3, 1, 19, 7, 2, 1, 20, 0, 21, 1, 2, 8, 4, 1, 22, 3, 0, 1, 23, 2, 3, 1, 2, 5, 24, 1, 4, 9, 2, 1, 3, 2, 25, 1, 5, 0, 26, 1, 27, 6, 2
OFFSET
1,3
FORMULA
a(1) = 0; for n > 1, if A067029(n) = 1, then a(n) = A055396(n), otherwise a(n) = a(A028234(n)).
EXAMPLE
For n = 8 = 2*2*2, none of the prime divisors are unitary, thus a(8) = 0.
For n = 20 = 2*2*5 = prime(1)^2 * prime(3), the prime divisor 2 is not unitary, but 5 (= prime(3)) is, thus a(20) = 3.
For n = 36 = 2*2*3*3, none of the prime divisors are unitary, thus a(36) = 0.
MATHEMATICA
Table[If[Length@ # == 0, 0, PrimePi@ First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 105}] (* Michael De Vlieger, Oct 30 2016 *)
PROG
(Scheme) (definec (A277697 n) (cond ((= 1 n) 0) ((= 1 (A067029 n)) (A055396 n)) (else (A277697 (A028234 n)))))
(Python)
from sympy import factorint, primepi, isprime, primefactors
def a049084(n): return primepi(n)*(1*isprime(n))
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def a028234(n):
f = factorint(n)
return 1 if n==1 else n/(min(f)**f[min(f)])
def a067029(n):
f=factorint(n)
return 0 if n==1 else f[min(f)]
def a(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a(a028234(n)) # Indranil Ghosh, May 15 2017
(PARI) a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, return(primepi(f[i, 1])))); 0; } \\ Amiram Eldar, Jul 28 2024
CROSSREFS
Cf. A001694 (positions of zeros).
Cf. also A080368, A277698, A277707.
Sequence in context: A353396 A355533 A355528 * A355525 A241917 A355526
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 28 2016
STATUS
approved