Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jul 28 2024 03:37:20
%S 0,1,2,0,3,1,4,0,0,1,5,2,6,1,2,0,7,1,8,3,2,1,9,2,0,1,0,4,10,1,11,0,2,
%T 1,3,0,12,1,2,3,13,1,14,5,3,1,15,2,0,1,2,6,16,1,3,4,2,1,17,2,18,1,4,0,
%U 3,1,19,7,2,1,20,0,21,1,2,8,4,1,22,3,0,1,23,2,3,1,2,5,24,1,4,9,2,1,3,2,25,1,5,0,26,1,27,6,2
%N a(n) = index of the least unitary prime divisor of n or 0 if no such prime-divisor exists.
%H Antti Karttunen, <a href="/A277697/b277697.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="https://oeis.org/wiki/Index_to_OEIS:_Section_Pri#prime_indices">Index entries for sequences computed from prime indices</a>.
%F a(1) = 0; for n > 1, if A067029(n) = 1, then a(n) = A055396(n), otherwise a(n) = a(A028234(n)).
%e For n = 8 = 2*2*2, none of the prime divisors are unitary, thus a(8) = 0.
%e For n = 20 = 2*2*5 = prime(1)^2 * prime(3), the prime divisor 2 is not unitary, but 5 (= prime(3)) is, thus a(20) = 3.
%e For n = 36 = 2*2*3*3, none of the prime divisors are unitary, thus a(36) = 0.
%t Table[If[Length@ # == 0, 0, PrimePi@ First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 105}] (* _Michael De Vlieger_, Oct 30 2016 *)
%o (Scheme) (definec (A277697 n) (cond ((= 1 n) 0) ((= 1 (A067029 n)) (A055396 n)) (else (A277697 (A028234 n)))))
%o (Python)
%o from sympy import factorint, primepi, isprime, primefactors
%o def a049084(n): return primepi(n)*(1*isprime(n))
%o def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
%o def a028234(n):
%o f = factorint(n)
%o return 1 if n==1 else n/(min(f)**f[min(f)])
%o def a067029(n):
%o f=factorint(n)
%o return 0 if n==1 else f[min(f)]
%o def a(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a(a028234(n)) # _Indranil Ghosh_, May 15 2017
%o (PARI) a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, return(primepi(f[i, 1])))); 0;} \\ _Amiram Eldar_, Jul 28 2024
%Y Cf. A028234, A055396, A067029.
%Y Cf. A001694 (positions of zeros).
%Y Cf. also A080368, A277698, A277707.
%K nonn
%O 1,3
%A _Antti Karttunen_, Oct 28 2016