login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A080368
a(n) is the least unitary prime divisor of n, or 0 if no such prime divisor exists.
4
0, 2, 3, 0, 5, 2, 7, 0, 0, 2, 11, 3, 13, 2, 3, 0, 17, 2, 19, 5, 3, 2, 23, 3, 0, 2, 0, 7, 29, 2, 31, 0, 3, 2, 5, 0, 37, 2, 3, 5, 41, 2, 43, 11, 5, 2, 47, 3, 0, 2, 3, 13, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 0, 5, 2, 67, 17, 3, 2, 71, 0, 73, 2, 3, 19, 7, 2, 79, 5, 0, 2, 83, 3, 5, 2, 3, 11, 89, 2, 7, 23, 3, 2
OFFSET
1,2
LINKS
FORMULA
If A277697(n) = 0, then a(n) = 0, otherwise a(n) = A000040(A277697(n)). - Antti Karttunen, Oct 28 2016
from Amiram Eldar, Aug 17 2024: (Start)
a(n) = 0 if and only of n is powerful (A001694).
a(n) = A020639(A055231(n)) if n is not powerful. (End)
EXAMPLE
For n = 252100 = 2*2*3*5*5*7*11*11, the unitary prime divisors are {3,7}, the smallest is 3, so a(252100) = 3.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; gb[x_] := GCD[ba[x], x/ba[x]]; fpg[x_] := Flatten[Position[gb[x], 1]]; upd[x_] := Part[ba[x], fpg[x]]; mxu[x_] := Max[upd[x]]; miu[x_] := Min[upd[x]]; Do[If[Equal[upd[n], {}], Print[0]]; If[ !Equal[upd[n], {}], Print[miu[n]]], {n, 2, 256}]
Table[If[Or[n == 1, Length@ # == 0], 0, First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 94}] (* Michael De Vlieger, Oct 30 2016 *)
a[n_] := If[(p = Select[FactorInteger[n], Last[#] == 1 &][[;; , 1]]) == {}, 0, Min[p]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Aug 17 2024 *)
PROG
(Haskell)
a080368 n = if null us then 0 else fst $ head us
where us = filter ((== 1) . snd) $ zip (a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, Jul 23 2014
(Scheme) (define (A080368 n) (if (zero? (A277697 n)) 0 (A000040 (A277697 n)))) ;; Antti Karttunen, Oct 28 2016
(Python)
from sympy import factorint, prime, primepi, isprime, primefactors
def a049084(n): return primepi(n)*(1*isprime(n))
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def a028234(n):
f = factorint(n)
return 1 if n==1 else n/(min(f)**f[min(f)])
def a067029(n):
f=factorint(n)
return 0 if n==1 else f[min(f)]
def a277697(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a277697(a028234(n))
def a(n): return 0 if a277697(n)==0 else prime(a277697(n)) # Indranil Ghosh, May 16 2017
(PARI) a(n) = {my(f = factor(n), pmin = 0); for(i = 1, #f~, if(f[i, 2] == 1, if(pmin == 0, pmin = f[i, 1], if(f[i, 1] < pmin, pmin = f[i, 1])))); pmin; } \\ Amiram Eldar, Aug 17 2024
CROSSREFS
Cf. A001694 (positions of zeros).
Cf. A277698 for a variant which gives 1's instead of 0's for numbers with no unitary prime divisors (A001694).
Sequence in context: A074722 A370744 A331102 * A057174 A197658 A199514
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Feb 21 2003
EXTENSIONS
a(1)=0 inserted by Reinhard Zumkeller, Jul 23 2014
STATUS
approved