Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 19 2024 22:11:43
%S 0,0,0,1,0,0,0,1,2,0,0,1,0,0,0,1,0,2,0,1,0,0,0,1,3,0,2,1,0,0,0,1,0,0,
%T 0,1,0,0,0,1,0,0,0,1,2,0,0,1,4,3,0,1,0,2,0,1,0,0,0,1,0,0,2,1,0,0,0,1,
%U 0,0,0,1,0,0,3,1,0,0,0,1,2,0,0,1,0,0,0,1,0,2,0,1,0,0,0,1,0,4,2,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,2,0,0,1
%N a(n) = index of the least non-unitary prime divisor of n or 0 if no such prime-divisor exists.
%H Antti Karttunen, <a href="/A277885/b277885.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="https://oeis.org/wiki/Index_to_OEIS:_Section_Pri#prime_indices">Index entries for sequences computed from prime indices</a>.
%F a(1) = 0; for n > 1, if A067029(n) > 1, a(n) = A055396(n), otherwise a(n) = a(A028234(n)). [One may use A032742 instead of A028234 for recursing.]
%F A008578(1+a(n)) = A249739(n).
%F For n > 1, a(n) + A277697(n) > 0.
%t Table[PrimePi@ Min[Select[FactorInteger[n][[All, 1]], ! CoprimeQ[#, n/#] &] /. {} -> 0], {n, 120}] (* _Michael De Vlieger_, Nov 15 2016 *)
%o (Scheme) (definec (A277885 n) (cond ((= 1 n) 0) ((< 1 (A067029 n)) (A055396 n)) (else (A277885 (A028234 n)))))
%o (Python)
%o from sympy import factorint, primepi, isprime, primefactors
%o def a049084(n): return primepi(n)*(1*isprime(n))
%o def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
%o def a028234(n):
%o f = factorint(n)
%o return 1 if n==1 else n/(min(f)**f[min(f)])
%o def a067029(n):
%o f=factorint(n)
%o return 0 if n==1 else f[min(f)]
%o def a(n): return 0 if n==1 else a055396(n) if a067029(n)>1 else a(a028234(n)) # _Indranil Ghosh_, May 15 2017
%o (PARI) a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] > 1, return(primepi(f[i, 1])))); 0;} \\ _Amiram Eldar_, Jul 28 2024
%Y Cf. A008578, A028234, A032742, A055396, A067029, A249739.
%Y Cf. A277697.
%Y Cf. A005117 (gives the positions of zeros).
%K nonn
%O 1,9
%A _Antti Karttunen_, Nov 08 2016