login
A030214
Expansion of eta(q^7)*eta(q^17).
6
0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,156
LINKS
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
FORMULA
Expansion of x * Product_{k>=1} (1 - x^(7*k)) * (1 - x^(17*k)). - Seiichi Manyama, Oct 19 2016
MATHEMATICA
eta = QPochhammer;
CoefficientList[q eta[q^7] eta[q^17] + O[q]^100, q] (* Jean-François Alcover, Feb 21 2021 *)
PROG
(PARI) q='q+O('q^99); concat(0, Vec(eta(q^7)*eta(q^17))) \\ Charles R Greathouse IV, Oct 19 2016
CROSSREFS
Cf. Expansion of eta(q^k)*eta(q^(24 - k)): A030199 (k=1), A030201 (k=3), A030213 (k=5), this sequence (k=7), A030215 (k=9), A030216 (k=10), A030217 (k=11).
Sequence in context: A283020 A098108 A363712 * A369658 A025464 A373260
KEYWORD
sign
AUTHOR
STATUS
approved