login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373374
a(n) = 1 if both A001414(n) and A003415(n) are even, otherwise 0, where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
3
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1
OFFSET
1
FORMULA
a(n) = A059841(A373364(n)).
a(n) = A356163(n) * A358680(n).
a(n) = A353374(n) + A253513(n)*A353374(n/8). [With shortcut + and *]
PROG
(PARI)
A353374(n) = (!(bigomega(n)%2) && !(valuation(n, 2)%2));
A373374(n) = (A353374(n) || (!(n%8) && A353374(n/8)));
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A373374(n) = !(gcd(A001414(n), A003415(n))%2);
CROSSREFS
Characteristic function of A373375, whose complement A373376 gives the positions of 0's.
Positions of even terms in A373364.
Sequence in context: A307423 A355684 A355683 * A120523 A269625 A359828
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 03 2024
STATUS
approved