login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373377
a(n) = gcd(A059975(n), A083345(n)), where A059975 is fully additive with a(p) = p-1, and A083345 is the numerator of the fully additive function with a(p) = 1/p.
6
0, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 6, 2, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 5, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 12, 1, 1, 1, 1, 2, 9, 2, 14, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 18, 2, 1, 1, 1, 1, 1, 1, 20, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 24, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,8
COMMENTS
For each n >= 2, a(n) is a divisor of A373378(n).
LINKS
PROG
(PARI)
A059975(n) = { my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A373377(n) = gcd(A059975(n), A083345(n));
CROSSREFS
Cf. A369002 (positions of even terms), A369003 (of odd terms).
Sequence in context: A197027 A143772 A373366 * A053989 A342459 A057160
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved