login
A373370
a(n) = gcd(bigomega(n), A064097(n)), where bigomega is number of prime factors with repetition, and A064097 is a quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.
3
0, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 1, 3, 1, 5, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 4, 1, 4, 1, 3, 1, 2, 1, 1, 1, 3, 3, 4, 1, 1, 1, 4, 3
OFFSET
1,4
COMMENTS
As A001222 and A064097 are both fully additive sequences, all sequences that give the positions of multiples of some natural number k in this sequence are closed under multiplication, i.e., are multiplicative semigroups.
LINKS
PROG
(PARI)
A064097(n) = if(1==n, 0, 1+A064097(n-(n/vecmin(factor(n)[, 1]))));
A373370(n) = gcd(bigomega(n), A064097(n));
CROSSREFS
Cf. also A373365, A373366.
Sequence in context: A089398 A345272 A373381 * A331183 A284082 A047040
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved