OFFSET
1,4
COMMENTS
If p is a prime, we have a(p) = 1. In general, if n = p^q with p prime, then a(n) <= q. For every prime power p^q < 10^13 it actually holds a(p^q) = q. Is this true for every prime power? - Giovanni Resta, Mar 20 2017
Yes, this is true: sigma[m](p^q) == 1/(1-p^m) (mod p^q); this is never divisible by p, and == 1 (mod p^q) iff m >= q. - Robert Israel, Apr 27 2017
First occurrence of k: 21, 1, 4, 8, 16, 22, 26, 69, 44, 38, 75, 46, 148, 316, 58, 186, ..., . - Robert G. Wilson v, Apr 14 2017
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
MAPLE
f:= proc(n) local m, mm, F, S, P, D, M0, M1;
F:= ifactors(n)[2];
if nops(F) = 1 then return F[1][2] fi;
P:= map(t -> t[1]^t[2], F);
S:= mul(add(t[1]^(i*m), i=0..t[2]), t=F);
D:= subs(n=0, numtheory:-divisors(n));
for mm from 1 to ilcm(op(map(numtheory:-phi, P)))+max(seq(t[2], t=F)) do
if member(subs(m=mm, S) mod n, D) then return mm fi;
od;
0
end proc:
map(f, [$1..100]); # Robert Israel, Apr 27 2017
MATHEMATICA
a[n_] := Block[{ds, d=Divisors[n], m=0}, While[m <= 2*n, m++; ds = DivisorSigma[m, n]; If[ Select[d, Mod[ds-#, n] == 0 &, 1] != {}, Break[]]]; If[m > 2*n, 0, m]]; Array[a, 85] (* assuming that sigma(m, n) mod n has a period <= 2*n, Giovanni Resta, Mar 20 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Mar 19 2017
EXTENSIONS
a(56) from Giovanni Resta, Mar 20 2017
STATUS
approved