|
|
A205523
|
|
Numbers k such that gcd(k, sigma(k)) == sigma(k) (mod k).
|
|
6
|
|
|
1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 37, 40, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 83, 88, 89, 97, 101, 103, 104, 107, 109, 113, 120, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 180, 181, 191, 193, 196, 197, 199
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
Number 24 is in sequence because gcd(24, sigma(24)) = (sigma(24)=60) mod 24 = 12.
|
|
MATHEMATICA
|
Select[Range[300], Mod[GCD[#, DivisorSigma[1, #]] - DivisorSigma[1, #], #] == 0 &]
|
|
PROG
|
(PARI) isok(n) = (gcd(n, sigma(n)) % n) == (sigma(n) % n); \\ Michel Marcus, Dec 22 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|