OFFSET
1,2
COMMENTS
G. Tenenbaum proved that a(n) is asymptotically equal to (Pi^2/12)*n^2/log(n) (Théorème 2).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Steven Finch, Multiples and divisors, January 27, 2004. [Cached copy, with permission of the author]
G. Tenenbaum, Sur deux fonctions de diviseurs, J. London Math. Soc. (1976) s2-14 (3): 521-526.
MAPLE
g:= proc(n) min(select(t -> t^2 >= n, numtheory:-divisors(n))) end proc:
ListTools:-PartialSums(map(g, [$1..100])); # Robert Israel, Nov 22 2024
MATHEMATICA
Accumulate[Table[First[Select[Divisors[n], #>=Sqrt[n]&]], {n, 56}]] (* James C. McMahon, Jun 18 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 26 2012
STATUS
approved