OFFSET
1,6
COMMENTS
E. Vantieghem proved that a(n) = 1 if and only if n is an odd prime. - Michel Marcus, Nov 26 2012
LINKS
E. Vantieghem, On a congruence only holding for primes II, arXiv:0812.2841 [math.NT], 2008-2009.
FORMULA
a(n) = A028362(n) modulo (2^n - 1).
MATHEMATICA
Join[{0}, Table[m = 2^n - 1; prod = 1; Do[prod = Mod[prod*(2^i + 1), m], {i, n - 1}]; prod, {n, 2, 40}]] (* T. D. Noe, Nov 27 2012 *)
PROG
(PARI) a(m) = {for (n=1, m, print1(prod(j=1, n-1, 2^j+1) % (2^n - 1), ", "); ); }
(PARI) a(n)=if(n>2, my(m=2^n-1); lift(prod(i=1, n-1, Mod(2, m)^i+1)), 0) \\ Charles R Greathouse IV, Nov 26 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 26 2012
STATUS
approved