login
A266557
Decimal expansion of the generalized Glaisher-Kinkelin constant A(10).
19
1, 0, 1, 9, 1, 1, 0, 2, 3, 3, 3, 2, 9, 3, 8, 3, 8, 5, 3, 7, 2, 2, 1, 6, 4, 7, 0, 4, 9, 8, 6, 2, 9, 7, 5, 1, 3, 5, 1, 3, 4, 8, 1, 3, 7, 2, 8, 4, 0, 9, 9, 6, 0, 4, 4, 5, 9, 6, 4, 1, 4, 9, 4, 6, 7, 6, 5, 5, 4, 2, 8, 9, 5, 9, 3
OFFSET
1,4
COMMENTS
Also known as the 10th Bendersky constant.
LINKS
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(10) = exp(-zeta'(-10)) = exp((B(10)/4)*(zeta(11)/zeta(10))).
A(10) = exp(10! * Zeta(11) / (2^11 * Pi^10)). - Vaclav Kotesovec, Jan 01 2016
EXAMPLE
1.01911023332938385372216470498629751351348137284099604...
MATHEMATICA
Exp[N[(BernoulliB[10]/4)*(Zeta[11]/Zeta[10]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
Sequence in context: A176522 A219732 A259314 * A010534 A078297 A380396
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved