The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243262 Decimal expansion of the generalized Glaisher-Kinkelin constant A(2). 29
 1, 0, 3, 0, 9, 1, 6, 7, 5, 2, 1, 9, 7, 3, 9, 2, 1, 1, 4, 1, 9, 3, 3, 1, 3, 0, 9, 6, 4, 6, 6, 9, 4, 2, 2, 9, 0, 6, 3, 3, 1, 9, 4, 3, 0, 6, 4, 0, 3, 4, 8, 7, 0, 6, 0, 2, 2, 7, 2, 6, 1, 7, 4, 1, 1, 4, 5, 1, 6, 6, 0, 6, 6, 9, 7, 8, 2, 9, 0, 4, 0, 5, 2, 9, 2, 9, 3, 1, 3, 6, 2, 5, 5, 4, 8, 0, 8, 8, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Also known as the second Bendersky constant. This is likely the same as the constant B considered in section 3 of the Choi and Srivastava link. - R. J. Mathar, Oct 03 2016 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137. LINKS G. C. Greubel, Table of n, a(n) for n = 1..2002 J. Choi and H. M. Srivastava, Certain classes of series involving the zeta function, J. Math. Annal. Applic. 231 (1999) 91-117. K. Kimoto, N. Kurokawa, C. Sonoki, M. Wakayama, Some examples of generalized zeta regularized products, Kodai Math. J. 27 (2004), 321-335. Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant FORMULA A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number. A(0) = sqrt(2*Pi) (A019727), A(1) = A = Glaisher-Kinkelin constant (A074962), A(2) = exp(-zeta'(-2)) = exp(zeta(3)/(4*Pi^2)). Equals exp(-A240966). - Vaclav Kotesovec, Feb 22 2015 EXAMPLE 1.03091675219739211419331309646694229... MATHEMATICA RealDigits[Exp[Zeta[3]/(4*Pi^2)], 10, 99] // First RealDigits[Exp[N[(BernoulliB[2]/4)*(Zeta[3]/Zeta[2]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *) PROG (PARI) exp(zeta(3)/(4*Pi^2)) \\ Felix Fröhlich, Jun 27 2019 CROSSREFS Cf. A051675, A055462, A240966, A255269. Cf. A019727, A074962, A243263, A243264, A243265, A266553, A266554, A266555, A266556, A266557, A266558, A266559, A260662, A266560, A266562, A266563, A266564, A266565, A266566, A266567. Sequence in context: A096429 A196622 A196827 * A191661 A296487 A159760 Adjacent sequences:  A243259 A243260 A243261 * A243263 A243264 A243265 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jun 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 12:52 EDT 2020. Contains 334762 sequences. (Running on oeis4.)