login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266563 Decimal expansion of the generalized Glaisher-Kinkelin constant A(16). 19
1, 6, 9, 8, 1, 8, 3, 9, 7, 8, 4, 2, 7, 7, 5, 6, 0, 7, 7, 4, 7, 3, 0, 9, 5, 5, 1, 6, 8, 3, 1, 2, 7, 1, 1, 8, 7, 9, 5, 1, 5, 2, 9, 1, 4, 2, 8, 6, 3, 7, 7, 3, 5, 8, 6, 0, 2, 7, 1, 7, 5, 9, 5, 5, 0, 0, 0, 7, 5, 4, 2, 1, 7, 6, 0, 8, 8, 8, 8, 0, 1, 4, 7, 1, 9, 3, 5, 6, 7, 0, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also known as the 16th Bendersky constant.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..2000

FORMULA

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann Zeta function.

A(16) = exp((B(16)/4)*(zeta(17)/zeta(16))) = exp(-zeta'(-16)).

A(16) = exp(-16! * Zeta(17) / (2^17 * Pi^16)). - Vaclav Kotesovec, Jan 01 2016

EXAMPLE

0.16981839784277560774730955168312711879515291428637735860...

MATHEMATICA

Exp[N[(BernoulliB[16]/4)*(Zeta[17]/Zeta[16]), 200]]

CROSSREFS

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Cf. A013674, A013675, A266271, A027641, A027642.

Sequence in context: A019696 A119801 A191608 * A153603 A198557 A198214

Adjacent sequences:  A266560 A266561 A266562 * A266564 A266565 A266566

KEYWORD

nonn,cons

AUTHOR

G. C. Greubel, Dec 31 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 23:18 EST 2020. Contains 332195 sequences. (Running on oeis4.)