OFFSET
0,1
COMMENTS
Also known as the third Bendersky constant.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(B(k+1)/(k+1)*H(k) - zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(3) = exp(-11/720 - zeta'(-3)).
Equals exp(3*zeta'(4)/(4*Pi^4) - gamma/120) / (2*Pi)^(1/120), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 24 2015
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^4-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(4)/4 = -1/120 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
0.97955552694284460582421883726349...
MATHEMATICA
RealDigits[Exp[-11/720 - Zeta'[-3]], 10, 98] // First
RealDigits[Exp[(BernoulliB[4]/4) * (EulerGamma + Log[2 * Pi] - (Zeta'[4]/Zeta[4]))], 10, 100] // First (* G. C. Greubel, Dec 31 2015 *)
PROG
(PARI) exp(-11/720 - zeta'(-3)) \\ Stefano Spezia, Dec 01 2024
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Jun 02 2014
STATUS
approved