This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266566 Decimal expansion of the generalized Glaisher-Kinkelin constant A(19). 20
 1, 7, 8, 2, 7, 5, 4, 2, 7, 6, 9, 4, 6, 7, 1, 4, 1, 1, 8, 8, 1, 7, 6, 7, 0, 9, 7, 7, 4, 3, 5, 4, 4, 5, 5, 6, 9, 5, 6, 0, 8, 1, 8, 3, 7, 0, 1, 5, 7, 2, 0, 6, 5, 3, 2, 4, 4, 8, 9, 4, 4, 3, 5, 5, 0, 0, 6, 2, 9, 3, 8, 8, 9, 6, 5, 8, 7, 4, 0, 6, 6, 7, 1, 9, 8, 4, 0, 6, 0, 9, 8, 4, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET -28,2 COMMENTS Also known as the 19th Bendersky constant. LINKS G. C. Greubel, Table of n, a(n) for n = -28..2000 FORMULA A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann Zeta function. A(19) = exp(H(19)*B(20)/20 - zeta'(-19)) = exp((B(20)/20)*(EulerGamma + log(2*Pi) - (zeta'(20)/zeta(20))). EXAMPLE 1.78275427694671411881767097743544556956081837015720653244894...*10^(-28) MATHEMATICA Exp[N[(BernoulliB[20]/20)*(EulerGamma + Log[2*Pi] - Zeta'[20]/Zeta[20]), 200]] CROSSREFS Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266567 (A(20)). Sequence in context: A021565 A011103 A245758 * A309523 A153622 A257576 Adjacent sequences:  A266563 A266564 A266565 * A266567 A266568 A266569 KEYWORD nonn,cons AUTHOR G. C. Greubel, Dec 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 22:20 EDT 2019. Contains 327252 sequences. (Running on oeis4.)