login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266569 a(1) = 1; thereafter a(2k) = 4k + a(k); a(2k+1) = k + a(4k+4). 7
1, 5, 30, 13, 68, 42, 64, 29, 132, 88, 119, 66, 154, 92, 132, 61, 248, 168, 217, 128, 261, 163, 221, 114, 322, 206, 273, 148, 326, 192, 268, 125, 468, 316, 401, 240, 463, 293, 387, 208, 533, 345, 448, 251, 519, 313, 425, 210, 646, 422, 543, 310, 623, 381, 511 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Daniel Suteu, Table of n, a(n) for n = 1..10000

Daniel Suteu, Table of n, a(n) for n = 1..100000

EXAMPLE

For n=2, a(2) = 4 + a(1) = 5.

For n=3:

a(3) = 1 + a(8);

a(8) = 2*8 + a(8/2) = 16 + a(4);

a(4) = 2*4 + a(4/2) = 8 + a(2) = 13;

a(8) = 18+13 = 29;

a(3) = 1 + 29 = 30.

MAPLE

A266569 := proc(n)

    option remember;

    local k;

    if n = 1 then

        1;

    elif type(n, 'even') then

        2*n+procname(n/2) ;

    else

        k := (n-1)/2 ;

        k+procname(4*k+4) ;

    end if;

end proc:

seq(A266569(n), n=1..100) ; # R. J. Mathar, May 06 2016

MATHEMATICA

a[1] = 1; a[n_] := a[n] = If[EvenQ@ n, 2 n + a[n/2], (n - 1)/2 + a[2 (n + 1)]]; Array[a, 55] (* Michael De Vlieger, Jan 02 2016 *)

PROG

(Sidef)

func a((1)) { 1 }

func a(n {.is_even}) is cached { 2*n + a(n/2) }

func a(n {.is_odd }) is cached { (n-1)/2 + a(2*(n + 1)) }

1000.times { |n| say a(n) }

CROSSREFS

Records (high water marks): A270811, A270812.

Cf. A270814, A271473, A271478, A271479.

Sequence in context: A237256 A172041 A187605 * A098346 A134166 A154522

Adjacent sequences:  A266566 A266567 A266568 * A266570 A266571 A266572

KEYWORD

nonn,easy

AUTHOR

Daniel Suteu, Jan 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 11:34 EST 2018. Contains 317133 sequences. (Running on oeis4.)