login
A270814
a(1)=0; thereafter a(2k)=k+a(k), a(2k+1)=6k+4+a(6k+4).
3
0, 1, 46, 3, 31, 49, 281, 7, 330, 36, 248, 55, 106, 288, 679, 15, 197, 339, 500, 46, 127, 259, 610, 67, 633, 119, 101413, 302, 413, 694, 101073, 31, 808, 214, 505, 357, 498, 519, 2305, 66, 101290, 148, 1295, 281, 452, 633, 100932, 91, 757, 658, 1079, 145, 346, 101440, 102261, 330, 1596, 442, 2128
OFFSET
1,3
COMMENTS
Inspired by A266569.
In other words, a(n) = n/2 + a(n/2) if n even, a(n) = 3n+1+a(3n+1) if n odd.
From Seiichi Manyama, Apr 25 2016: (Start)
This sequence was inspired by the Collatz problem (A006577).
The Collatz rule is as follows: If n is even, divide it by 2, otherwise multiply it by 3 and add 1 (A006370).
For example, starting with n = 3, one gets the sequence 3, 10, 5, 16, 8, 4, 2, 1. So a(3) = 10 + 5 + 16 + 8 + 4 + 2 + 1 = 46. (End) [Comment edited by N. J. A. Sloane, Apr 25 2016]
MAPLE
A270814 := proc(n)
local a, traj ;
a := 0 ;
traj := n ;
while traj > 1 do
if type(traj, 'even') then
traj := traj/2 ;
else
traj := 3*traj+1 ;
end if;
a := a+traj ;
end do:
return a;
end proc:
[seq(A270814(n), n=1..60)];
PROG
(PARI) a(n) = my(ret=n-1); while((n>>=valuation(n, 2)) > 1, ret+=5*n+2; n=3*n+1); ret; \\ Kevin Ryde, Dec 10 2022
CROSSREFS
Cf. A006370 (Collatz step), A006577 (trajectory length), A033493 (sum including n).
Sequence in context: A267319 A261513 A036204 * A284597 A286288 A051161
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 08 2016
EXTENSIONS
Typo in definition corrected by Gionata Neri, Apr 08 2016
STATUS
approved