login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270817
Integers k such that (2^k - 1) + (3^k - 1) + (5^k - 1) is prime.
0
1, 3, 4, 9, 11, 69, 117, 449, 675, 1119, 1959, 2687, 2859, 8001, 8175, 24269, 110247
OFFSET
1,2
COMMENTS
Inspired by A268067.
Corresponding primes are 7, 157, 719, 1973317, 49007317, ...
EXAMPLE
4 is a term because (2^4 - 1) + (3^4 - 1) + (5^4 - 1) = 719 is a prime number.
MATHEMATICA
Select[Range@ 3000, PrimeQ[(2^# - 1) + (3^# - 1) + (5^# - 1)] &] (* Michael De Vlieger, Mar 23 2016 *)
PROG
(PARI) lista(nn) = for(n=1, nn, if(ispseudoprime(-3 + 2^n + 3^n + 5^n), print1(n, ", ")));
(Python)
from sympy import isprime
def afind(limit, startk=1):
pow2, pow3, pow5 = 2**startk, 3**startk, 5**startk
for k in range(startk, limit+1):
if isprime(pow2 + pow3 + pow5 - 3): print(k, end=", ")
pow2 *= 2; pow3 *= 3; pow5 *= 5
afind(1200) # Michael S. Branicky, Sep 08 2021
CROSSREFS
Sequence in context: A366753 A062798 A327060 * A182828 A294229 A035256
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Mar 23 2016
EXTENSIONS
a(14)-a(15) from Michael S. Branicky, Sep 08 2021
a(16) from Michael S. Branicky, Apr 13 2023
a(17) from Michael S. Branicky, Nov 27 2024
STATUS
approved