login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270815
Let M be the n-th Giuga number (see A007850); a(n) = sum of (M/p - 1)/p for primes p dividing M.
1
11, 321, 657, 24699, 824438641, 9331106993, 165242994898683, 5626813041698235, 210318566007979643, 90916134718317480897884289, 206287562744685037912181145873, 729990278282182004516138224533969
OFFSET
1,1
COMMENTS
For the additional Giuga number (not known to be the next term of A007850), 4200017949707747062038711509670656632404195753751630609228764416142557211582098432545190323474818 the corresponding value is 1563694051115215735786664430977202618214176554388873529993304101116913223541171676954379378709457.
EXAMPLE
Prime factors of 30 are 2, 3 and 5: (30/2 - 1)/2 + (30/3 - 1)/3 + (30/5 - 1)/5 = 7 + 3 + 1 = 11.
MAPLE
with(numtheory): P:=proc(q) local n, x; x:=[30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506];
for n from 1 to nops(x) do print(add((x[n]/k-1)/k, k=factorset(x[n]))); od; end: P(1);
CROSSREFS
Sequence in context: A166053 A200749 A324422 * A197448 A241127 A268551
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Mar 23 2016
STATUS
approved