login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let M be the n-th Giuga number (see A007850); a(n) = sum of (M/p - 1)/p for primes p dividing M.
1

%I #16 May 22 2019 00:04:13

%S 11,321,657,24699,824438641,9331106993,165242994898683,

%T 5626813041698235,210318566007979643,90916134718317480897884289,

%U 206287562744685037912181145873,729990278282182004516138224533969

%N Let M be the n-th Giuga number (see A007850); a(n) = sum of (M/p - 1)/p for primes p dividing M.

%C For the additional Giuga number (not known to be the next term of A007850), 4200017949707747062038711509670656632404195753751630609228764416142557211582098432545190323474818 the corresponding value is 1563694051115215735786664430977202618214176554388873529993304101116913223541171676954379378709457.

%e Prime factors of 30 are 2, 3 and 5: (30/2 - 1)/2 + (30/3 - 1)/3 + (30/5 - 1)/5 = 7 + 3 + 1 = 11.

%p with(numtheory): P:=proc(q) local n,x; x:=[30, 858, 1722, 66198, 2214408306, 24423128562, 432749205173838, 14737133470010574, 550843391309130318, 244197000982499715087866346, 554079914617070801288578559178, 1910667181420507984555759916338506];

%p for n from 1 to nops(x) do print(add((x[n]/k-1)/k,k=factorset(x[n]))); od; end: P(1);

%Y Cf. A007850, A270816.

%K nonn,more

%O 1,1

%A _Paolo P. Lava_, Mar 23 2016