%I #51 Dec 11 2022 01:24:29
%S 0,1,46,3,31,49,281,7,330,36,248,55,106,288,679,15,197,339,500,46,127,
%T 259,610,67,633,119,101413,302,413,694,101073,31,808,214,505,357,498,
%U 519,2305,66,101290,148,1295,281,452,633,100932,91,757,658,1079,145,346,101440,102261,330,1596,442,2128
%N a(1)=0; thereafter a(2k)=k+a(k), a(2k+1)=6k+4+a(6k+4).
%C Inspired by A266569.
%C In other words, a(n) = n/2 + a(n/2) if n even, a(n) = 3n+1+a(3n+1) if n odd.
%C From _Seiichi Manyama_, Apr 25 2016: (Start)
%C This sequence was inspired by the Collatz problem (A006577).
%C The Collatz rule is as follows: If n is even, divide it by 2, otherwise multiply it by 3 and add 1 (A006370).
%C For example, starting with n = 3, one gets the sequence 3, 10, 5, 16, 8, 4, 2, 1. So a(3) = 10 + 5 + 16 + 8 + 4 + 2 + 1 = 46. (End) [Comment edited by _N. J. A. Sloane_, Apr 25 2016]
%H Seiichi Manyama, <a href="/A270814/b270814.txt">Table of n, a(n) for n = 1..20000</a>
%H Seiichi Manyama, <a href="/A270814/a270814.txt">Table of n, a(n) for n = 1..650289</a>
%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%p A270814 := proc(n)
%p local a, traj ;
%p a := 0 ;
%p traj := n ;
%p while traj > 1 do
%p if type(traj, 'even') then
%p traj := traj/2 ;
%p else
%p traj := 3*traj+1 ;
%p end if;
%p a := a+traj ;
%p end do:
%p return a;
%p end proc:
%p [seq(A270814(n),n=1..60)];
%o (PARI) a(n) = my(ret=n-1); while((n>>=valuation(n,2)) > 1, ret+=5*n+2; n=3*n+1); ret; \\ _Kevin Ryde_, Dec 10 2022
%Y Cf. A006370 (Collatz step), A006577 (trajectory length), A033493 (sum including n).
%Y Cf. A266569, A271473.
%K nonn
%O 1,3
%A _N. J. A. Sloane_, Apr 08 2016
%E Typo in definition corrected by _Gionata Neri_, Apr 08 2016