login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309523
Start with a(1) = 1 and apply certain patterns of operations on a(n-1) to obtain a(n) as described in comments.
1
1, 7, 8, 2, 16, 4, 5, 17, 10, 34, 35, 11, 70, 22, 23, 71, 46, 142, 143, 47, 286, 94, 95, 287, 190, 574, 575, 191, 1150, 382, 383, 1151, 766, 2302, 2303, 767, 4606, 1534, 1535, 4607, 3070, 9214, 9215, 3071, 18430, 6142, 6143, 18431, 12286, 36862
OFFSET
1,2
COMMENTS
a(2) = 7 is obtained from a(1) = 1 by (((1) +1) *3) +1. We abbreviate this to the operation pattern "+1 *3 +1". The 8 patterns for a(3..10), a(11..18) etc. are:
+1
+1 /3 -1
+1 *3 *2 -2
-1 /3 -1
+1
+1 *3 -1
+1 /3 *2 -2
+1 *3 +1
A308709 uses similar, but simpler patterns in blocks of 4 (cf. the example, below). A308709 contains the set {2^k | k>=0} union {3*2^k | k>=0}, so all terms are different. This sequence contains the terms {6*A308709 - 2} union {6*A308709 - 1}, therefore all terms are also different.
FORMULA
From Colin Barker, Aug 06 2019: (Start)
G.f.: x*(1 + 6*x + 2*x^2 + 15*x^4 - 18*x^5 + 15*x^6 - 10*x^8 + 12*x^9 - 14*x^10) / ((1 - x)*(1 + x^2)*(1 - 2*x^4)*(1 + 2*x^4)).
a(n) = a(n-1) - a(n-2) + a(n-3) + 4*a(n-8) - 4*a(n-9) + 4*a(n-10) - 4*a(n-11) for n>11.
(End)
EXAMPLE
A308709 | this sequence
| 1
| 7 +1 *3 +1
| 8 +1
| 2 +1 /3 -1
3 | 16 +1 *3 *2 -2
1 /3 | 4 -1 /3 -1
| 5 +1
| 17 +1 *3 -1
2 *2 | 10 +1 /3 *2 -2
6 *3 | 34 +1 *3 +1
| 35 +1
| 11 +1 /3 -1
12 *2 | 70 +1 *3 *2 -2
4 /3 | 22 -1 /3 -1
| 23 +1
| 71 +1 *3 -1
8 *2 | 46 +1 /3 *2 -2
24 *3 | 142 +1 *3 +1
| 143 +1
MATHEMATICA
LinearRecurrence[{1, -1, 1, 0, 0, 0, 0, 4, -4, 4, -4}, {1, 7, 8, 2, 16, 4, 5, 17, 10, 34, 35}, 50]
PROG
(PARI) Vec(x*(1 + 6*x + 2*x^2 + 15*x^4 - 18*x^5 + 15*x^6 - 10*x^8 + 12*x^9 - 14*x^10) / ((1 - x)*(1 + x^2)*(1 - 2*x^4)*(1 + 2*x^4)) + O(x^40)) \\ Colin Barker, Aug 06 2019
(Perl) use integer;
my @a; my $n = 1; $a[$n ++] = 1;
$a[$n ++] = (($a[$n-1] +1) *3) +1; # 7
while ($n < 50) {
$a[$n ++] = (($a[$n-1] +1) ); # 8
$a[$n ++] = (($a[$n-1] +1) /3) -1; # 2
$a[$n ++] = (($a[$n-1] +1) *3) *2 -2; # 16
$a[$n ++] = (($a[$n-1] -1) /3) -1; # 4
$a[$n ++] = (($a[$n-1] +1) ); # 5
$a[$n ++] = (($a[$n-1] +1) *3) -1; # 17
$a[$n ++] = (($a[$n-1] +1) /3) *2 -2; # 10
$a[$n ++] = (($a[$n-1] +1) *3) +1; # 34
} # while
shift(@a); # remove $a[0]
print join(", ", @a) . "\n"; # Georg Fischer, Aug 07 2019
(Python)
def A309523():
k, j, a = 0, 0, 1
def b(a): return a + 1
def c(a): return a + 2
def d(a): return a - 1
def e(a): return a - 2
def f(a): return a << 1
def g(a): return a * 3
def h(a): return a // 3
O = [c, g, e, b, b, h, d, b, g, f, e, c, h, e, b, b, g, d, b, h, f, e]
L = [3, 1, 3, 4]
while True:
yield(a)
for _ in range(L[j]):
a = O[k](a)
k += 1; k %= 22
j += 1; j %= 4
a = A309523()
print([next(a) for _ in range(50)]) # Peter Luschny, Aug 06 2019
CROSSREFS
Cf. A308709.
Sequence in context: A342486 A245758 A266566 * A153622 A257576 A378129
KEYWORD
nonn,easy
AUTHOR
Georg Fischer, Aug 06 2019
STATUS
approved