login
A309526
a(n) is the greatest divisor of A001353(n) that is coprime to A001353(m) for all positive integers m < n.
1
1, 4, 15, 7, 209, 13, 2911, 97, 901, 181, 564719, 193, 7865521, 2521, 6989, 18817, 1525870529, 2701, 21252634831, 37441, 6779137, 489061, 4122901604639, 37633, 274758906449, 6811741, 6575588101, 1037623, 11140078609864049, 40321, 155161278879431551
OFFSET
1,2
COMMENTS
Analog of A178763 and A308949.
Let b(n) = A309040(n)*gcd(A309040(n),n), then for n > 3: a(n) = b(2n) for even n and b(n)*b(2n) for odd n. It seems highly impossible that b(n) = 1 holds for n > 3, so it seems that only even-indexed terms can be primes.
FORMULA
a(n) = A306825(n) / gcd(A306825(n), n) if n != 2, 3.
EXAMPLE
A001353(6) = 780 = 2^2 * 3 * 5 * 13. We have 2 divides A001353(2) = 2 and 3, 5 divides A001353(3) = 15, but A001353(m) is coprime to 13 for all 1 <= m < 6, so a(6) = 13.
PROG
(PARI) T(n) = ([4, -1; 1, 0]^n)[2, 1]
b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
a(n) = if(isprime(n)&&!(12%n), b(n), b(n)/gcd(n, b(n)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 06 2019
STATUS
approved