OFFSET
1,2
COMMENTS
A prime p is called a unique-period prime in base b if there is no other prime q such that the period length of 1/q is equal to that of 1/p. If q = a(2p) = A001353(2*p)/(4*A001353(p)) = ((2 + sqrt(3))^p + (2 - sqrt(3))^p)/4 is prime (this happens for p = 3, 5, 7, 11, 13, 17, 19, 79, 151, 199, 233, 251, 317, ...), where p is an odd prime, then q is a unique-period prime in base b = (sqrt(12*q^2 - 3) - 1)/2 (1/q has period length 3) as well as in base b' = (sqrt(12*q^2 - 3) + 1)/2 (1/q has period length 6). For example, a(6) = 13 is prime, so 13 is the only prime whose reciprocal has period length 3 in base 22 and the only prime whose reciprocal has period length 6 in base 23. Compare: If q = A000129(p) = A008555(p), then q is a unique-period prime in base b = sqrt(2*q^2 - 1) (1/q has period length 4).
By Lucas-Lehmer test, p is a Mersenne prime > 3 if and only if the smallest k such that p divides a(k) is k = (p - 1)/2.
For primes p, p^2 divides a(k) for some k if and only if p = 2 or p is in A238490. If p > 2, the only possible values for k are the divisors of (p - Legendre(3,p))/2 (e.g., 103^2 divides a(52) = 53028360515521 = 103^2 * 4998431569).
Conjecturally there must be infinitely many primes p such that a(p) is prime, but no such p is known. [By the formula below, there is no such p. - Jianing Song, Oct 31 2024]
LINKS
Eric Weisstein's World of Mathematics, Sylvester Cyclotomic Number
Wikipedia, Lucas Lehmer Primality Test
FORMULA
EXAMPLE
PROG
(PARI) b(n) = if(n==1, [1], my(v=vector(n)); v[1]=1; v[2]=4; for(i=3, n, v[i]=4*v[i-1]-v[i-2]); v)
a(n) = my(d=divisors(n)); prod(i=1, #d, (b(n)[d[i]])^moebius(n/d[i]))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Mar 16 2019
STATUS
approved