login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008555 Primitive parts of Pell numbers. 10
1, 2, 5, 6, 29, 7, 169, 34, 197, 41, 5741, 33, 33461, 239, 1345, 1154, 1136689, 199, 6625109, 1121, 45697, 8119, 225058681, 1153, 45232349, 47321, 7761797, 38081, 44560482149, 961, 259717522849, 1331714, 52734529, 1607521, 1800193921, 39201 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Also called Sylvester-Pell cyclotomic numbers. - Paul Barry, Apr 15 2005

According to Guy, Raphael Robinson noticed that a(7) and a(30) are squares and asked if there are more. There are no others in the first 10000 terms. [From T. D. Noe, May 07 2009]

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, A3.

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

Eric Weisstein's World of Mathematics, Sylvester Cyclotomic Number. - Paul Barry, Apr 15 2005

FORMULA

a(n) = A000129(n) / product_{d<n,d|n} a(d) [From T. D. Noe, May 07 2009]

a(n)=product{k=1..n-1, if(gcd(n, k)=1, (1+sqrt(2))-(1-sqrt(2))*exp(2*pi*I*k/n), 1)}, I=sqrt(-1) - Paul Barry, Apr 15 2005

EXAMPLE

a(8)=34 because pell(8)=408 and 408/(a(4)*a(2)*a(1)) = 408/12 = 34. [From T. D. Noe, May 07 2009]

MATHEMATICA

pell={1, 2}; pp={1, 2}; Do[s=2*pell[[ -1]]+pell[[ -2]]; AppendTo[pell, s]; AppendTo[pp, s/Times@@pp[[Most[Divisors[n]]]]], {n, 3, 40}]; pp [From T. D. Noe, May 07 2009]

CROSSREFS

Cf. A061446 (primitive part of Fibonacci numbers) [From T. D. Noe, May 07 2009]

Cf. A105606.

Sequence in context: A137067 A214200 A273924 * A056441 A164805 A275285

Adjacent sequences:  A008552 A008553 A008554 * A008556 A008557 A008558

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Corrected and extended by T. D. Noe, May 07 2009

Edited by N. J. A. Sloane, Oct 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 17:06 EST 2019. Contains 329058 sequences. (Running on oeis4.)