

A178763


Product of primitive prime factors of Fibonacci(n).


6



1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 23, 3001, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 107, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441, 64079
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Same as A001578 for the first 18 terms.
Let b(n) be the greatest divisor of Fibonacci(n) that is coprime to Fibonacci(m) for all positive integers m < n, then a(n) = b(n) for all n, provided that no WallSunSun prime exists. Otherwise, if p is a WallSunSun prime and A001177(p) = k (then A001177(p^2) = k), then p^2 divides b(k), but by definition a(k) is squarefree.  Jianing Song, Jul 02 2019


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See pp. 6064 for a table of the first 385 terms.
Florian Luca, Carl Pomerance, and Stephen Wagner, Fibonacci Integers (preprint)


FORMULA

a(n) = A061446(n) / A178764(n).
a(n) = A061446(n) / gcd(A061446(n), n) if n != 5, 6, provided that no WallSunSun prime exists.  Jianing Song, Jul 02 2019


PROG

(PARI) a(n)=my(d=divisors(n), f=fibonacci(n), t); t=lcm(apply(fibonacci, d[1..#d1])); while((t=gcd(t, f))>1, f/=t); f \\ Charles R Greathouse IV, Nov 30 2016


CROSSREFS

Cf. A061446, A086597, A152012 (Indices of prime terms).
Sequence in context: A030790 A001578 A262341 * A111141 A069111 A171035
Adjacent sequences: A178760 A178761 A178762 * A178764 A178765 A178766


KEYWORD

nonn


AUTHOR

T. D. Noe, Jun 10 2010


STATUS

approved



