OFFSET
1,3
COMMENTS
Same as A001578 for the first 18 terms.
Let b(n) be the greatest divisor of Fibonacci(n) that is coprime to Fibonacci(m) for all positive integers m < n, then a(n) = b(n) for all n, provided that no Wall-Sun-Sun prime exists. Otherwise, if p is a Wall-Sun-Sun prime and A001177(p) = k (then A001177(p^2) = k), then p^2 divides b(k), but by definition a(k) is squarefree. - Jianing Song, Jul 02 2019
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See pp. 60-64 for a table of the first 385 terms.
Florian Luca, Carl Pomerance, and Stephen Wagner, Fibonacci Integers (preprint)
FORMULA
a(n) = A061446(n) / gcd(A061446(n), n) if n != 5, 6, provided that no Wall-Sun-Sun prime exists. - Jianing Song, Jul 02 2019
PROG
(PARI) a(n)=my(d=divisors(n), f=fibonacci(n), t); t=lcm(apply(fibonacci, d[1..#d-1])); while((t=gcd(t, f))>1, f/=t); f \\ Charles R Greathouse IV, Nov 30 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 10 2010
STATUS
approved