login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308949
a(n) is the greatest divisor of A000129(n) that is coprime to A000129(m) for all positive integers m < n.
2
1, 2, 5, 3, 29, 7, 169, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 1136689, 199, 6625109, 1121, 45697, 8119, 225058681, 1153, 45232349, 47321, 7761797, 38081, 44560482149, 961, 259717522849, 665857, 52734529, 1607521, 1800193921, 13067, 51422757785981
OFFSET
1,2
COMMENTS
a(n) is squarefree unless n is of the form A214028(A238736(k)) = {7, 30, 1546462, ...}. The terms in A238736 are called 2-Wall-Sun-Sun primes.
FORMULA
a(n) = A008555(n) / gcd(A008555(n), n) if n != 2.
EXAMPLE
A000129(30) = 107578520350 = 2 * 5^2 * 7 * 29 * 31^2 * 41 * 269. We have 2, 7 divides A000129(6) = 70; 29, 41 divides A000129(10) = 2378; 5, 269 divides A000129(15) = 195025, but A000129(m) is coprime to 31 for all 1 <= m < 30, so a(30) = 31^2 = 961.
MATHEMATICA
nmax = 40;
pell = {1, 2};
pp = {1, 2};
Do[s = 2*pell[[-1]] + pell[[-2]];
AppendTo[pell, s];
AppendTo[pp, s/Times @@ pp[[Most[Divisors[n]]]]], {n, 3, nmax}];
a[2] = 2;
a[n_] := pp[[n]]/GCD[pp[[n]], n];
Array[a, nmax] (* Jean-François Alcover, Jul 06 2019, after T. D. Noe in A008555 *)
PROG
(PARI) T(n) = ([2, 1; 1, 0]^n)[2, 1]
b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
a(n) = if(n==2, 2, b(n)/gcd(n, b(n)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Jul 02 2019
STATUS
approved