|
|
A239309
|
|
a(n) is the smallest k such that prime(n) divides Sum_{i=1..k} A086169(i), or 0 if no such k exists, where A086169(i) is the sum of the first i twin prime pairs.
|
|
1
|
|
|
1, 0, 2, 5, 3, 37, 21, 29, 67, 71, 23, 11, 15, 7, 58, 12, 41, 8, 66, 25, 35, 370, 35, 17, 75, 159, 198, 30, 37, 153, 232, 333, 170, 507, 108, 279, 41, 61, 486, 9, 194, 211, 29, 73, 173, 575, 152, 214, 10, 147, 126, 672, 388, 77, 358, 1048, 528, 291, 322, 1491
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(2) = 0. Proof
It is easy to see that A054735(1)= 8 ==2 (mod 3) and A054735(n)==0 mod 3 for n > 1 where A054735 is the sum of twin pairs. Hence A086169(n)==2 (mod 3) and the prime 3 is never a divisor of A086169(n).
|
|
LINKS
|
|
|
EXAMPLE
|
a(1)=1 because A086169(1)=(3+5)=8 and prime(1)= 2 divides 8;
a(2)=0 because prime(2)=3 is never a divisor of A086169(n);
a(3)=2 because A086169(2)=(3+5)+(5+7)=20 and prime(3)= 5 divides 20.
|
|
MATHEMATICA
|
Transpose[With[{aprs=Thread[{Range[5000], Accumulate[Select[Table[Prime[n]+1, {n, 45900}], PrimeQ[#+1]&]*2]}]}, Flatten[Table[Select[aprs, Divisible[Last[#], Prime[m]]&, 1], {m, 1, 60}], 1]]][[1]]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|