login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A266553
Decimal expansion of the generalized Glaisher-Kinkelin constant A(6).
19
1, 0, 0, 5, 9, 1, 7, 1, 9, 6, 9, 9, 8, 6, 7, 3, 4, 6, 8, 4, 4, 4, 0, 1, 3, 9, 8, 3, 5, 5, 4, 2, 5, 5, 6, 5, 6, 3, 9, 0, 6, 1, 5, 6, 5, 5, 0, 0, 6, 9, 3, 2, 1, 1, 4, 0, 0, 9, 8, 0, 5, 1, 5, 7, 4, 0, 8, 1, 4, 6, 8, 7, 0, 3, 4, 2, 9, 9, 4, 6, 3, 2, 7, 7, 1, 9, 6, 7, 0, 8, 1, 7, 0, 8, 8, 4, 1, 4, 6, 8, 7, 3, 5, 4, 1, 1, 1, 0, 0, 2, 2, 4, 0, 3
OFFSET
1,4
COMMENTS
Also known as the 6th Bendersky constant.
LINKS
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(6) = exp(- zeta'(-6)) = exp((B(6)/4)*(zeta(7)/zeta(6))).
A(6) = exp(6! * Zeta(7) / (2^7 * Pi^6)). - Vaclav Kotesovec, Jan 01 2016
EXAMPLE
1.00591719699867346844401398355425565639061565500693211400980...
MATHEMATICA
Exp[N[(BernoulliB[6]/4)*(Zeta[7]/Zeta[6]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
Sequence in context: A362742 A010490 A021173 * A306980 A063921 A346044
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved