OFFSET
0,1
LINKS
FORMULA
Equals limit n->infinity Product_{k=1..n} p(k) / (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi)), where p(k) is the partition function A000041.
EXAMPLE
0.91101673133224995186154746959468345278073860978008093028132149022759...
MATHEMATICA
(* The iteration cycle: *) Do[Print[Product[N[PartitionsP[k]/((E^(Sqrt[2/3]*Sqrt[k-1/24]*Pi) * (1 - Sqrt[3/2]/(Sqrt[k-1/24]*Pi))) / (4*Sqrt[3]*(k-1/24))), 150], {k, 1, n}]], {n, 500, 50000, 500}]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Jun 24 2015
STATUS
approved