login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A023895
Number of partitions of n into composite parts.
32
1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 0, 4, 1, 4, 2, 7, 2, 9, 3, 12, 6, 15, 6, 23, 11, 26, 15, 37, 19, 48, 26, 61, 39, 78, 47, 105, 65, 126, 88, 167, 111, 211, 146, 264, 196, 331, 241, 426, 318, 519, 408, 657, 511, 820, 651, 1010, 833, 1252, 1028, 1564, 1301, 1900
OFFSET
0,9
COMMENTS
First differences of A002095. - Emeric Deutsch, Apr 03 2006
a(n+1) > a(n) for n > 108. - Reinhard Zumkeller, Aug 22 2007
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000 (terms n = 0..150 from Reinhard Zumkeller)
FORMULA
G.f.: (1-x)*Product_{j>=1} (1-x^prime(j))/(1-x^j). - Emeric Deutsch, Apr 03 2006
EXAMPLE
a(12) = 4 because 12 = 4 + 4 + 4 = 6 + 6 = 4 + 8 = 12 (itself a composite number).
MAPLE
g:=(1-x)*product((1-x^ithprime(j))/(1-x^j), j=1..80): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..62); # Emeric Deutsch, Apr 03 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
b(n, i-1)+ `if`(i>n or isprime(i), 0, b(n-i, i))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..70); # Alois P. Heinz, May 29 2013
MATHEMATICA
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; CoefficientList[ Series[1/Product[1 - x^Composite[i], {i, 1, 50}], {x, 0, 75}], x]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<2, 0, b[n, i-1] + If[i>n || PrimeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)
PROG
(Haskell)
a023895 = p a002808_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Jan 15 2012
CROSSREFS
Cf. A002808.
Cf. A002095.
Cf. A132456.
Cf. A204389.
Sequence in context: A229817 A080966 A187150 * A070963 A174064 A139158
KEYWORD
nonn
EXTENSIONS
More terms from Reinhard Zumkeller, Aug 22 2007
STATUS
approved