login
A023897
sigma_1(n) / phi(n) for balanced numbers.
14
1, 3, 2, 6, 7, 4, 3, 9, 2, 8, 5, 6, 7, 4, 7, 10, 5, 12, 4, 9, 10, 3, 4, 14, 10, 8, 6, 13, 9, 8, 5, 15, 7, 2, 6, 8, 4, 5, 12, 6, 7, 10, 10, 11, 14, 12, 9, 4, 3, 4, 12, 9, 4, 4, 7, 5, 7, 10, 3, 5, 4, 13, 14, 12, 10, 9, 10, 8, 7, 4, 8, 6, 18, 9, 3, 8, 13, 8, 15, 15, 8, 3, 14, 9, 10, 8, 8, 10, 5, 7, 8, 11, 6, 11, 13, 6
OFFSET
1,2
COMMENTS
sigma_1(n) is the sum of the divisors of n [same as sigma(n)] (A000203).
LINKS
Jud McCranie, Table of n, a(n) for n = 1..10000 (first 800 terms from Vincenzo Librandi)
MATHEMATICA
Select[ Array[ DivisorSigma[ 1, # ]/EulerPhi[ # ]&, 20000 ], IntegerQ ]
PROG
(Magma) [ q: n in [1..20000] | r eq 0 where q, r is Quotrem(SumOfDivisors(n), EulerPhi(n)) ]; // Klaus Brockhaus, Nov 09 2008
(Python)
from math import prod
from itertools import count, islice
from sympy import factorint
def A023897_gen(startvalue=1): # generator of terms >= startvalue
for m in count(max(startvalue, 1)):
f = factorint(m)
q, r = divmod(prod(p**(e+2)-p for p, e in f.items()), m*prod((p-1)**2 for p in f))
if not r:
yield q
A023897_list = list(islice(A023897_gen(), 20)) # Chai Wah Wu, Aug 12 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved