login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207636
Triangle of coefficients of polynomials v(n,x) jointly generated with A207635; see Formula section.
3
1, 3, 2, 6, 7, 2, 12, 20, 11, 2, 24, 52, 42, 15, 2, 48, 128, 136, 72, 19, 2, 96, 304, 400, 280, 110, 23, 2, 192, 704, 1104, 960, 500, 156, 27, 2, 384, 1600, 2912, 3024, 1960, 812, 210, 31, 2, 768, 3584, 7424, 8960, 6944, 3584, 1232, 272, 35, 2, 1536, 7936
OFFSET
1,2
COMMENTS
As triangle T(n,k) with 0 <= k <= n, it is (3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012
FORMULA
u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 26 2012: (Start)
As triangle T(n,k), 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 1, T(1,0) = 3, T(1,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+x+y*x)/(1-2*x-y*x).
Sum_{k=0..n} T(n,k)*x^k = A003945(n), |A084244(n)|, A189274(n) for x = 0, 1, 3 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A040000(n), |A084244(n)|, A128625(n) for x = 0, 1, 2 respectively. (End)
EXAMPLE
First five rows:
1;
3, 2;
6, 7, 2;
12, 20, 11, 2;
24, 52, 42, 15, 2;
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207635 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207636 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 24 2012
STATUS
approved