login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of polynomials v(n,x) jointly generated with A207635; see Formula section.
3

%I #14 Jan 22 2020 20:12:30

%S 1,3,2,6,7,2,12,20,11,2,24,52,42,15,2,48,128,136,72,19,2,96,304,400,

%T 280,110,23,2,192,704,1104,960,500,156,27,2,384,1600,2912,3024,1960,

%U 812,210,31,2,768,3584,7424,8960,6944,3584,1232,272,35,2,1536,7936

%N Triangle of coefficients of polynomials v(n,x) jointly generated with A207635; see Formula section.

%C As triangle T(n,k) with 0 <= k <= n, it is (3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 26 2012

%F u(n,x) = u(n-1,x) + v(n-1,x),

%F v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x) + 1,

%F where u(1,x)=1, v(1,x)=1.

%F From _Philippe Deléham_, Feb 26 2012: (Start)

%F As triangle T(n,k), 0 <= k <= n:

%F T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 1, T(1,0) = 3, T(1,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.

%F G.f.: (1+x+y*x)/(1-2*x-y*x).

%F Sum_{k=0..n} T(n,k)*x^k = A003945(n), |A084244(n)|, A189274(n) for x = 0, 1, 3 respectively.

%F Sum_{k=0..n} T(n,k)*x^(n-k) = A040000(n), |A084244(n)|, A128625(n) for x = 0, 1, 2 respectively. (End)

%e First five rows:

%e 1;

%e 3, 2;

%e 6, 7, 2;

%e 12, 20, 11, 2;

%e 24, 52, 42, 15, 2;

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + v[n - 1, x]

%t v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1

%t Table[Factor[u[n, x]], {n, 1, z}]

%t Table[Factor[v[n, x]], {n, 1, z}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A207635 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A207636 *)

%Y Cf. A207635.

%Y Cf. A084938, A003945, A040000.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Feb 24 2012