login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into composite parts.
14

%I #31 Nov 03 2023 11:08:17

%S 1,0,0,0,1,0,1,0,2,1,2,0,4,1,4,2,7,2,9,3,12,6,15,6,23,11,26,15,37,19,

%T 48,26,61,39,78,47,105,65,126,88,167,111,211,146,264,196,331,241,426,

%U 318,519,408,657,511,820,651,1010,833,1252,1028,1564,1301,1900

%N Number of partitions of n into composite parts.

%C First differences of A002095. - _Emeric Deutsch_, Apr 03 2006

%C a(n+1) > a(n) for n > 108. - _Reinhard Zumkeller_, Aug 22 2007

%H Alois P. Heinz, <a href="/A023895/b023895.txt">Table of n, a(n) for n = 0..5000</a> (terms n = 0..150 from Reinhard Zumkeller)

%F G.f.: (1-x)*Product_{j>=1} (1-x^prime(j))/(1-x^j). - _Emeric Deutsch_, Apr 03 2006

%e a(12) = 4 because 12 = 4 + 4 + 4 = 6 + 6 = 4 + 8 = 12 (itself a composite number).

%p g:=(1-x)*product((1-x^ithprime(j))/(1-x^j),j=1..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..62); # _Emeric Deutsch_, Apr 03 2006

%p # second Maple program:

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,

%p b(n, i-1)+ `if`(i>n or isprime(i), 0, b(n-i, i))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..70); # _Alois P. Heinz_, May 29 2013

%t Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; CoefficientList[ Series[1/Product[1 - x^Composite[i], {i, 1, 50}], {x, 0, 75}], x]

%t (* Second program: *)

%t b[n_, i_] := b[n, i] = If[n==0, 1, If[i<2, 0, b[n, i-1] + If[i>n || PrimeQ[i], 0, b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *)

%o (Haskell)

%o a023895 = p a002808_list where

%o p _ 0 = 1

%o p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m

%o -- _Reinhard Zumkeller_, Jan 15 2012

%Y Cf. A002808.

%Y Cf. A002095.

%Y Cf. A132456.

%Y Cf. A204389.

%K nonn

%O 0,9

%A _Olivier Gérard_

%E More terms from _Reinhard Zumkeller_, Aug 22 2007