login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204389
Number of partitions of n into distinct composite parts.
7
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 3, 2, 3, 1, 5, 3, 5, 4, 7, 4, 9, 7, 10, 9, 13, 10, 17, 14, 18, 18, 25, 22, 30, 27, 34, 36, 44, 40, 53, 52, 62, 65, 76, 74, 93, 95, 107, 113, 131, 133, 158, 164, 182, 195, 221, 229, 264, 276, 304, 329, 367, 383, 431
OFFSET
0,11
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n = 0..250 from Reinhard Zumkeller)
FORMULA
G.f.: (1/(1 + x))*Product_{k>=1} (1 + x^k)/(1 + x^prime(k)). - Ilya Gutkovskiy, Dec 31 2016
G.f.: product_(i>=1) (1+x^A002808(i)). - R. J. Mathar, Mar 01 2023
EXAMPLE
a(10) = #{10, 6+4} = 2;
a(11) = #{ } = 0;
a(12) = #{12, 8+4} = 2;
a(13) = #{9+4} = 1;
a(14) = #{14, 10+4, 8+6} = 3;
a(15) = #{15, 9+6} = 2;
a(16) = #{16, 12+4, 10+6} = 3;
a(17) = #{9+8} = 1;
a(18) = #{18, 14+4, 12+6, 10+8, 8+6+4} = 5;
a(19) = #{15+4, 10+9, 9+6+4} = 3;
a(20) = #{20, 16+4, 14+6, 12+8, 10+6+4} = 5.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
b(n, i-1)+ `if`(i>n or isprime(i), 0, b(n-i, i-1))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..70); # Alois P. Heinz, May 29 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<2, 0, b[n, i-1] + If[i>n || PrimeQ[i], 0, b[n-i, i-1]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Oct 22 2015, after Alois P. Heinz *)
PROG
(Haskell)
a204389 = p a002808_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 15 2012
STATUS
approved