login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204386
Expansion of (theta_2(q)^8 + 4 * theta_2(q^2)^8) / 256 in powers of q^2.
1
1, 12, 28, 96, 126, 336, 344, 768, 757, 1512, 1332, 2688, 2198, 4128, 3528, 6144, 4914, 9084, 6860, 12096, 9632, 15984, 12168, 21504, 15751, 26376, 20440, 33024, 24390, 42336, 29792, 49152, 37296, 58968, 43344, 72672, 50654, 82320, 61544, 96768
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of x * psi(x)^8 + 4 * x^2 * psi(x^2)^8 in powers of x where psi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 / eta(q))^8 + 4 * (eta(q^4)^2 / eta(q^2))^8 in powers of q.
a(n) is multiplicative with a(2^e) = 3/2 * 8^e if e>0, a(p^e) = ((p^3) ^ (e+1) - 1) / (p^3 - 1).
a(2*n + 1) = A045823(n). a(2*n) = 12 * A007331(n).
Convolution of this sequence with A004018 is A050468.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 + 1/2^(s-2)) * (1 - 1/2^s) * zeta(s-3) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 5*Pi^4/1536 = 0.317086... . (End)
EXAMPLE
x + 12*x^2 + 28*x^3 + 96*x^4 + 126*x^5 + 336*x^6 + 344*x^7 + 768*x^8 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[(EllipticTheta[2, 0, q^(1/2)]^8 + 4*EllipticTheta[2, 0, q]^8)/256, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Apr 13 2018 *)
CoefficientList[Series[(EllipticTheta[2, 0, q^(1/2)]^8 +4*EllipticTheta[2, 0, q]^8)/ 256, {q, 0, 50}], q] (* Vaclav Kotesovec, Apr 13 2018 *)
PROG
(PARI) {a(n) = if( n<1, 0, if( n%2, sigma( n, 3), 12 * sumdiv( n/2, d, (n/2/d%2) * d^3)))}
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8 + 4 * x * (eta(x^4 + A)^2 / eta(x^2 + A))^8, n))}
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, Jan 15 2012
STATUS
approved