login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A204385
G.f.: Sum_{n>=1} moebius(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203 is the companion Pell numbers.
1
1, 1, 4, 6, 28, 22, 168, 204, 788, 1108, 5740, 4356, 33460, 39914, 149296, 235416, 1136688, 862466, 6625108, 7452408, 30662688, 46594942, 225058680, 170763912, 1266505772, 1583313340, 6116296036, 9119790204, 44560482148, 30146578648, 259717522848, 313506783024
OFFSET
1,3
COMMENTS
Compare g.f. to the identity: x = Sum_{n>=1} moebius(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)).
LINKS
FORMULA
a(2^n) = A001109(2^(n-1)) for n>=1, where the g.f. of A001109 is x/(1-6*x+x^2).
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 6*x^4 + 28*x^5 + 22*x^6 + 168*x^7 + 204*x^8 +...
where A(x) = x/(1-2*x-x^2) - x^2/(1-6*x^2+x^4) - x^3/(1-14*x^3-x^6) - x^5/(1-82*x^5-x^10) + x^6/(1-198*x^6+x^12) +...+ moebius(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
PROG
(PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
{a(n)=polcoeff(sum(m=1, n, moebius(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 14 2012
STATUS
approved