login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204383
G.f.: Product_{n>=1} (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 where A002203(n) is the companion Pell numbers.
3
1, -6, -9, 70, 90, 0, -1411, -1722, 0, 490, 60534, 75222, 49, -21510, 0, -6067754, -7542180, 0, 2156110, 0, 81, 1420032740, 1764323886, 0, -504516870, -8118, 0, -50196874, -783087782910, -973096740630, -121, 278263575996, 0, 0, 27685627830, 0, 1024173639305948
OFFSET
0,2
COMMENTS
a(A020757(n)) = 0 where A020757 lists numbers that are not the sum of two triangular numbers.
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} -3 * sigma(n) * A002203(n) * x^n/n ).
EXAMPLE
G.f.: A(x) = 1 - 6*x - 9*x^2 + 70*x^3 + 90*x^4 - 1411*x^6 - 1722*x^7 +...
-log(A(x))/3 = 1*2*x + 3*6*x^2/2 + 4*14*x^3/3 + 7*34*x^4/4 + 6*82*x^5/5 + 12*198*x^6/6 +...+ sigma(n)*A002203(n)*x^n/n +...
The g.f. equals the product:
A(x) = (1-2*x-x^2)^3 * (1-6*x^2+x^4)^3 * (1-14*x^3-x^6)^3 * (1-34*x^4+x^8)^3 * (1-82*x^5-x^10)^3 * (1-198*x^6+x^12)^3 *...* (1 - A002203(n)*x^n + (-1)^n*x^(2*n))^3 *...
Positions of zeros form A020757:
[5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...].
PROG
(PARI) /* Subroutine used in PARI programs below: */
{A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*A002203(k)*x^k/k)+x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(prod(m=1, n, 1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 14 2012
STATUS
approved