The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203861 G.f.: Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 where Lucas(n) = A000204(n). 5
 1, -3, -9, 20, 45, 0, -151, -231, 0, 140, 1107, 2052, 49, -1305, 0, -15004, -28260, 0, 17710, 0, 81, 324040, 589953, 0, -375570, -1089, 0, -124124, -10659705, -19764180, -121, 12605358, 0, 0, 4158315, 0, 567552368, 1052295189, -780030, -669901660, 0, 0, -221399431, -85965, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(A020757(n)) = 0 where A020757 lists numbers that are not the sum of two triangular numbers. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..1000 FORMULA G.f.: exp( Sum_{n>=1} -3 * sigma(n) * A000204(n) * x^n/n ). EXAMPLE G.f.: A(x) = 1 - 3*x - 9*x^2 + 20*x^3 + 45*x^4 - 151*x^6 - 231*x^7 +... -log(A(x))/3 = x + 3*3*x^2/2 + 4*4*x^3/3 + 7*7*x^4/4 + 6*11*x^5/5 + 12*18*x^6/6 +...+ sigma(n)*A000204(n)*x^n/n +... The g.f. equals the product: A(x) = (1-x-x^2)^3 * (1-3*x^2+x^4)^3 * (1-4*x^3-x^6)^3 * (1-7*x^4+x^8)^3 * (1-11*x^5-x^10)^3 * (1-18*x^6+x^12)^3 *...* (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^3 *... Positions of zeros form A020757: [5,8,14,17,19,23,26,32,33,35,40,41,44,47,50,52,53,54,59,62,63,...] which are numbers that are not the sum of two triangular numbers. PROG (PARI) /* Subroutine used in PARI programs below: */ {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)} (PARI) {a(n)=polcoeff(exp(sum(k=1, n, -3*sigma(k)*Lucas(k)*x^k/k)+x*O(x^n)), n)} (PARI) {a(n)=polcoeff(prod(m=1, n, 1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))^3, n)} CROSSREFS Cf. A203860, A203850, A156234, A020757. Sequence in context: A210634 A295148 A176163 * A073801 A065891 A321173 Adjacent sequences:  A203858 A203859 A203860 * A203862 A203863 A203864 KEYWORD sign AUTHOR Paul D. Hanna, Jan 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 05:07 EDT 2021. Contains 347664 sequences. (Running on oeis4.)